Polly 20.0.0git
imath/imrat.c
Go to the documentation of this file.
1/*
2 Name: imrat.c
3 Purpose: Arbitrary precision rational arithmetic routines.
4 Author: M. J. Fromberger
5
6 Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.
7
8 Permission is hereby granted, free of charge, to any person obtaining a copy
9 of this software and associated documentation files (the "Software"), to deal
10 in the Software without restriction, including without limitation the rights
11 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 copies of the Software, and to permit persons to whom the Software is
13 furnished to do so, subject to the following conditions:
14
15 The above copyright notice and this permission notice shall be included in
16 all copies or substantial portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 SOFTWARE.
25 */
26
27#include "imrat.h"
28#include <assert.h>
29#include <ctype.h>
30#include <stdlib.h>
31#include <string.h>
32
33#define MP_NUMER_SIGN(Q) (MP_NUMER_P(Q)->sign)
34#define MP_DENOM_SIGN(Q) (MP_DENOM_P(Q)->sign)
35
36#define TEMP(K) (temp + (K))
37#define SETUP(E, C) \
38 do { \
39 if ((res = (E)) != MP_OK) goto CLEANUP; \
40 ++(C); \
41 } while (0)
42
43/* Reduce the given rational, in place, to lowest terms and canonical form.
44 Zero is represented as 0/1, one as 1/1. Signs are adjusted so that the sign
45 of the numerator is definitive. */
47
48/* Common code for addition and subtraction operations on rationals. */
50 mp_result (*comb_f)(mp_int, mp_int, mp_int));
51
54
55 if ((res = mp_int_init(MP_NUMER_P(r))) != MP_OK) return res;
56 if ((res = mp_int_init(MP_DENOM_P(r))) != MP_OK) {
58 return res;
59 }
60
61 return mp_int_set_value(MP_DENOM_P(r), 1);
62}
63
65 mp_rat out = malloc(sizeof(*out));
66
67 if (out != NULL) {
68 if (mp_rat_init(out) != MP_OK) {
69 free(out);
70 return NULL;
71 }
72 }
73
74 return out;
75}
76
78
81
82 if ((res = mp_int_init_size(MP_NUMER_P(r), n_prec)) != MP_OK) {
83 return res;
84 }
85 if ((res = mp_int_init_size(MP_DENOM_P(r), d_prec)) != MP_OK) {
87 return res;
88 }
89
90 return mp_int_set_value(MP_DENOM_P(r), 1);
91}
92
95
96 if ((res = mp_int_init_copy(MP_NUMER_P(r), MP_NUMER_P(old))) != MP_OK) {
97 return res;
98 }
99 if ((res = mp_int_init_copy(MP_DENOM_P(r), MP_DENOM_P(old))) != MP_OK)
101
102 return res;
103}
104
107
108 if (denom == 0) return MP_UNDEF;
109
110 if ((res = mp_int_set_value(MP_NUMER_P(r), numer)) != MP_OK) {
111 return res;
112 }
113 if ((res = mp_int_set_value(MP_DENOM_P(r), denom)) != MP_OK) {
114 return res;
115 }
116
117 return s_rat_reduce(r);
118}
119
122
123 if (denom == 0) return MP_UNDEF;
124
125 if ((res = mp_int_set_uvalue(MP_NUMER_P(r), numer)) != MP_OK) {
126 return res;
127 }
128 if ((res = mp_int_set_uvalue(MP_DENOM_P(r), denom)) != MP_OK) {
129 return res;
130 }
131
132 return s_rat_reduce(r);
133}
134
138}
139
141 assert(r != NULL);
142
143 if (r->num.digits != NULL) mp_rat_clear(r);
144
145 free(r);
146}
147
149 return mp_int_copy(MP_NUMER_P(r), z);
150}
151
153
155 return mp_int_copy(MP_DENOM_P(r), z);
156}
157
159
161
164
165 if ((res = mp_int_copy(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK) {
166 return res;
167 }
168
170 return res;
171}
172
176}
177
180
181 if ((res = mp_int_abs(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK) {
182 return res;
183 }
184
186 return res;
187}
188
191
192 if ((res = mp_int_neg(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK) {
193 return res;
194 }
195
197 return res;
198}
199
202
203 if (mp_rat_compare_zero(a) == 0) return MP_UNDEF;
204
205 if ((res = mp_rat_copy(a, c)) != MP_OK) return res;
206
208
209 /* Restore the signs of the swapped elements */
210 {
211 mp_sign tmp = MP_NUMER_SIGN(c);
212
214 MP_DENOM_SIGN(c) = tmp;
215 }
216
217 return MP_OK;
218}
219
221 return s_rat_combine(a, b, c, mp_int_add);
222}
223
225 return s_rat_combine(a, b, c, mp_int_sub);
226}
227
230
232 return res;
233
234 if (mp_int_compare_zero(MP_NUMER_P(c)) != 0) {
236 if (res != MP_OK) {
237 return res;
238 }
239 }
240
241 return s_rat_reduce(c);
242}
243
246
247 if (mp_rat_compare_zero(b) == 0) return MP_UNDEF;
248
249 if (c == a || c == b) {
250 mpz_t tmp;
251
252 if ((res = mp_int_init(&tmp)) != MP_OK) return res;
253 if ((res = mp_int_mul(MP_NUMER_P(a), MP_DENOM_P(b), &tmp)) != MP_OK) {
254 goto CLEANUP;
255 }
256 if ((res = mp_int_mul(MP_DENOM_P(a), MP_NUMER_P(b), MP_DENOM_P(c))) !=
257 MP_OK) {
258 goto CLEANUP;
259 }
260 res = mp_int_copy(&tmp, MP_NUMER_P(c));
261
262 CLEANUP:
263 mp_int_clear(&tmp);
264 } else {
265 if ((res = mp_int_mul(MP_NUMER_P(a), MP_DENOM_P(b), MP_NUMER_P(c))) !=
266 MP_OK) {
267 return res;
268 }
269 if ((res = mp_int_mul(MP_DENOM_P(a), MP_NUMER_P(b), MP_DENOM_P(c))) !=
270 MP_OK) {
271 return res;
272 }
273 }
274
275 if (res != MP_OK) {
276 return res;
277 } else {
278 return s_rat_reduce(c);
279 }
280}
281
283 mpz_t tmp;
285
286 if ((res = mp_int_init_copy(&tmp, b)) != MP_OK) {
287 return res;
288 }
289 if ((res = mp_int_mul(&tmp, MP_DENOM_P(a), &tmp)) != MP_OK) {
290 goto CLEANUP;
291 }
292 if ((res = mp_rat_copy(a, c)) != MP_OK) {
293 goto CLEANUP;
294 }
295 if ((res = mp_int_add(MP_NUMER_P(c), &tmp, MP_NUMER_P(c))) != MP_OK) {
296 goto CLEANUP;
297 }
298
299 res = s_rat_reduce(c);
300
301CLEANUP:
302 mp_int_clear(&tmp);
303 return res;
304}
305
307 mpz_t tmp;
309
310 if ((res = mp_int_init_copy(&tmp, b)) != MP_OK) {
311 return res;
312 }
313 if ((res = mp_int_mul(&tmp, MP_DENOM_P(a), &tmp)) != MP_OK) {
314 goto CLEANUP;
315 }
316 if ((res = mp_rat_copy(a, c)) != MP_OK) {
317 goto CLEANUP;
318 }
319 if ((res = mp_int_sub(MP_NUMER_P(c), &tmp, MP_NUMER_P(c))) != MP_OK) {
320 goto CLEANUP;
321 }
322
323 res = s_rat_reduce(c);
324
325CLEANUP:
326 mp_int_clear(&tmp);
327 return res;
328}
329
332
333 if ((res = mp_rat_copy(a, c)) != MP_OK) {
334 return res;
335 }
336 if ((res = mp_int_mul(MP_NUMER_P(c), b, MP_NUMER_P(c))) != MP_OK) {
337 return res;
338 }
339
340 return s_rat_reduce(c);
341}
342
345
346 if (mp_int_compare_zero(b) == 0) {
347 return MP_UNDEF;
348 }
349 if ((res = mp_rat_copy(a, c)) != MP_OK) {
350 return res;
351 }
352 if ((res = mp_int_mul(MP_DENOM_P(c), b, MP_DENOM_P(c))) != MP_OK) {
353 return res;
354 }
355
356 return s_rat_reduce(c);
357}
358
361
362 /* Special cases for easy powers. */
363 if (b == 0) {
364 return mp_rat_set_value(c, 1, 1);
365 } else if (b == 1) {
366 return mp_rat_copy(a, c);
367 }
368
369 /* Since rationals are always stored in lowest terms, it is not necessary to
370 reduce again when raising to an integer power. */
371 if ((res = mp_int_expt(MP_NUMER_P(a), b, MP_NUMER_P(c))) != MP_OK) {
372 return res;
373 }
374
375 return mp_int_expt(MP_DENOM_P(a), b, MP_DENOM_P(c));
376}
377
379 /* Quick check for opposite signs. Works because the sign of the numerator
380 is always definitive. */
381 if (MP_NUMER_SIGN(a) != MP_NUMER_SIGN(b)) {
382 if (MP_NUMER_SIGN(a) == MP_ZPOS) {
383 return 1;
384 } else {
385 return -1;
386 }
387 } else {
388 /* Compare absolute magnitudes; if both are positive, the answer stands,
389 otherwise it needs to be reflected about zero. */
391
392 if (MP_NUMER_SIGN(a) == MP_ZPOS) {
393 return cmp;
394 } else {
395 return -cmp;
396 }
397 }
398}
399
401 /* If the denominators are equal, we can quickly compare numerators without
402 multiplying. Otherwise, we actually have to do some work. */
405 }
406
407 else {
408 mpz_t temp[2];
410 int cmp = INT_MAX, last = 0;
411
412 /* t0 = num(a) * den(b), t1 = num(b) * den(a) */
413 SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(a)), last);
414 SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(b)), last);
415
416 if ((res = mp_int_mul(TEMP(0), MP_DENOM_P(b), TEMP(0))) != MP_OK ||
417 (res = mp_int_mul(TEMP(1), MP_DENOM_P(a), TEMP(1))) != MP_OK) {
418 goto CLEANUP;
419 }
420
422
423 CLEANUP:
424 while (--last >= 0) {
425 mp_int_clear(TEMP(last));
426 }
427
428 return cmp;
429 }
430}
431
433
435 mpq_t tmp;
437 int out = INT_MAX;
438
439 if ((res = mp_rat_init(&tmp)) != MP_OK) {
440 return out;
441 }
442 if ((res = mp_rat_set_value(&tmp, n, d)) != MP_OK) {
443 goto CLEANUP;
444 }
445
446 out = mp_rat_compare(r, &tmp);
447
448CLEANUP:
449 mp_rat_clear(&tmp);
450 return out;
451}
452
454 return (mp_int_compare_value(MP_DENOM_P(r), 1) == 0);
455}
456
459
460 if ((res = mp_int_to_int(MP_NUMER_P(r), num)) != MP_OK) {
461 return res;
462 }
463
464 res = mp_int_to_int(MP_DENOM_P(r), den);
465 return res;
466}
467
468mp_result mp_rat_to_string(mp_rat r, mp_size radix, char *str, int limit) {
469 /* Write the numerator. The sign of the rational number is written by the
470 underlying integer implementation. */
472 if ((res = mp_int_to_string(MP_NUMER_P(r), radix, str, limit)) != MP_OK) {
473 return res;
474 }
475
476 /* If the value is zero, don't bother writing any denominator */
477 if (mp_int_compare_zero(MP_NUMER_P(r)) == 0) {
478 return MP_OK;
479 }
480
481 /* Locate the end of the numerator, and make sure we are not going to exceed
482 the limit by writing a slash. */
483 int len = strlen(str);
484 char *start = str + len;
485 limit -= len;
486 if (limit == 0) return MP_TRUNC;
487
488 *start++ = '/';
489 limit -= 1;
490
491 return mp_int_to_string(MP_DENOM_P(r), radix, start, limit);
492}
493
495 mp_round_mode round, char *str, int limit) {
496 mpz_t temp[3];
498 int last = 0;
499
500 SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(r)), last);
501 SETUP(mp_int_init(TEMP(last)), last);
502 SETUP(mp_int_init(TEMP(last)), last);
503
504 /* Get the unsigned integer part by dividing denominator into the absolute
505 value of the numerator. */
506 mp_int_abs(TEMP(0), TEMP(0));
507 if ((res = mp_int_div(TEMP(0), MP_DENOM_P(r), TEMP(0), TEMP(1))) != MP_OK) {
508 goto CLEANUP;
509 }
510
511 /* Now: T0 = integer portion, unsigned;
512 T1 = remainder, from which fractional part is computed. */
513
514 /* Count up leading zeroes after the radix point. */
515 int zprec = (int)prec;
516 int lead_0;
517 for (lead_0 = 0; lead_0 < zprec && mp_int_compare(TEMP(1), MP_DENOM_P(r)) < 0;
518 ++lead_0) {
519 if ((res = mp_int_mul_value(TEMP(1), radix, TEMP(1))) != MP_OK) {
520 goto CLEANUP;
521 }
522 }
523
524 /* Multiply remainder by a power of the radix sufficient to get the right
525 number of significant figures. */
526 if (zprec > lead_0) {
527 if ((res = mp_int_expt_value(radix, zprec - lead_0, TEMP(2))) != MP_OK) {
528 goto CLEANUP;
529 }
530 if ((res = mp_int_mul(TEMP(1), TEMP(2), TEMP(1))) != MP_OK) {
531 goto CLEANUP;
532 }
533 }
534 if ((res = mp_int_div(TEMP(1), MP_DENOM_P(r), TEMP(1), TEMP(2))) != MP_OK) {
535 goto CLEANUP;
536 }
537
538 /* Now: T1 = significant digits of fractional part;
539 T2 = leftovers, to use for rounding.
540
541 At this point, what we do depends on the rounding mode. The default is
542 MP_ROUND_DOWN, for which everything is as it should be already.
543 */
544 switch (round) {
545 int cmp;
546
547 case MP_ROUND_UP:
548 if (mp_int_compare_zero(TEMP(2)) != 0) {
549 if (prec == 0) {
550 res = mp_int_add_value(TEMP(0), 1, TEMP(0));
551 } else {
552 res = mp_int_add_value(TEMP(1), 1, TEMP(1));
553 }
554 }
555 break;
556
557 case MP_ROUND_HALF_UP:
559 if ((res = mp_int_mul_pow2(TEMP(2), 1, TEMP(2))) != MP_OK) {
560 goto CLEANUP;
561 }
562
564
565 if (round == MP_ROUND_HALF_UP) cmp += 1;
566
567 if (cmp > 0) {
568 if (prec == 0) {
569 res = mp_int_add_value(TEMP(0), 1, TEMP(0));
570 } else {
571 res = mp_int_add_value(TEMP(1), 1, TEMP(1));
572 }
573 }
574 break;
575
576 case MP_ROUND_DOWN:
577 break; /* No action required */
578
579 default:
580 return MP_BADARG; /* Invalid rounding specifier */
581 }
582 if (res != MP_OK) {
583 goto CLEANUP;
584 }
585
586 /* The sign of the output should be the sign of the numerator, but if all the
587 displayed digits will be zero due to the precision, a negative shouldn't
588 be shown. */
589 char *start = str;
590 int left = limit;
591 if (MP_NUMER_SIGN(r) == MP_NEG && (mp_int_compare_zero(TEMP(0)) != 0 ||
592 mp_int_compare_zero(TEMP(1)) != 0)) {
593 *start++ = '-';
594 left -= 1;
595 }
596
597 if ((res = mp_int_to_string(TEMP(0), radix, start, left)) != MP_OK) {
598 goto CLEANUP;
599 }
600
601 int len = strlen(start);
602 start += len;
603 left -= len;
604
605 if (prec == 0) goto CLEANUP;
606
607 *start++ = '.';
608 left -= 1;
609
610 if (left < zprec + 1) {
611 res = MP_TRUNC;
612 goto CLEANUP;
613 }
614
615 memset(start, '0', lead_0 - 1);
616 left -= lead_0;
617 start += lead_0 - 1;
618
619 res = mp_int_to_string(TEMP(1), radix, start, left);
620
621CLEANUP:
622 while (--last >= 0) mp_int_clear(TEMP(last));
623
624 return res;
625}
626
628 mp_result d_len = 0;
629 mp_result n_len = mp_int_string_len(MP_NUMER_P(r), radix);
630
631 if (mp_int_compare_zero(MP_NUMER_P(r)) != 0) {
632 d_len = mp_int_string_len(MP_DENOM_P(r), radix);
633 }
634
635 /* Though simplistic, this formula is correct. Space for the sign flag is
636 included in n_len, and the space for the NUL that is counted in n_len
637 counts for the separator here. The space for the NUL counted in d_len
638 counts for the final terminator here. */
639
640 return n_len + d_len;
641}
642
644 int f_len;
645 int z_len = mp_int_string_len(MP_NUMER_P(r), radix);
646
647 if (prec == 0) {
648 f_len = 1; /* terminator only */
649 } else {
650 f_len = 1 + prec + 1; /* decimal point, digits, terminator */
651 }
652
653 return z_len + f_len;
654}
655
657 return mp_rat_read_cstring(r, radix, str, NULL);
658}
659
661 char **end) {
663 char *endp;
664
665 if ((res = mp_int_read_cstring(MP_NUMER_P(r), radix, str, &endp)) != MP_OK &&
666 (res != MP_TRUNC)) {
667 return res;
668 }
669
670 /* Skip whitespace between numerator and (possible) separator */
671 while (isspace((unsigned char)*endp)) {
672 ++endp;
673 }
674
675 /* If there is no separator, we will stop reading at this point. */
676 if (*endp != '/') {
678 if (end != NULL) *end = endp;
679 return res;
680 }
681
682 ++endp; /* skip separator */
683 if ((res = mp_int_read_cstring(MP_DENOM_P(r), radix, endp, end)) != MP_OK) {
684 return res;
685 }
686
687 /* Make sure the value is well-defined */
688 if (mp_int_compare_zero(MP_DENOM_P(r)) == 0) {
689 return MP_UNDEF;
690 }
691
692 /* Reduce to lowest terms */
693 return s_rat_reduce(r);
694}
695
696/* Read a string and figure out what format it's in. The radix may be supplied
697 as zero to use "default" behaviour.
698
699 This function will accept either a/b notation or decimal notation.
700 */
702 char **end) {
703 char *endp = "";
705
706 if (radix == 0) radix = 10; /* default to decimal input */
707
708 res = mp_rat_read_cstring(r, radix, str, &endp);
709 if (res == MP_TRUNC && *endp == '.') {
710 res = mp_rat_read_cdecimal(r, radix, str, &endp);
711 }
712 if (end != NULL) *end = endp;
713 return res;
714}
715
717 return mp_rat_read_cdecimal(r, radix, str, NULL);
718}
719
721 char **end) {
723 mp_sign osign;
724 char *endp;
725
726 while (isspace((unsigned char)*str)) ++str;
727
728 switch (*str) {
729 case '-':
730 osign = MP_NEG;
731 break;
732 default:
733 osign = MP_ZPOS;
734 }
735
736 if ((res = mp_int_read_cstring(MP_NUMER_P(r), radix, str, &endp)) != MP_OK &&
737 (res != MP_TRUNC)) {
738 return res;
739 }
740
741 /* This needs to be here. */
742 (void)mp_int_set_value(MP_DENOM_P(r), 1);
743
744 if (*endp != '.') {
745 if (end != NULL) *end = endp;
746 return res;
747 }
748
749 /* If the character following the decimal point is whitespace or a sign flag,
750 we will consider this a truncated value. This special case is because
751 mp_int_read_string() will consider whitespace or sign flags to be valid
752 starting characters for a value, and we do not want them following the
753 decimal point.
754
755 Once we have done this check, it is safe to read in the value of the
756 fractional piece as a regular old integer.
757 */
758 ++endp;
759 if (*endp == '\0') {
760 if (end != NULL) *end = endp;
761 return MP_OK;
762 } else if (isspace((unsigned char)*endp) || *endp == '-' || *endp == '+') {
763 return MP_TRUNC;
764 } else {
765 mpz_t frac;
766 mp_result save_res;
767 char *save = endp;
768 int num_lz = 0;
769
770 /* Make a temporary to hold the part after the decimal point. */
771 if ((res = mp_int_init(&frac)) != MP_OK) {
772 return res;
773 }
774
775 if ((res = mp_int_read_cstring(&frac, radix, endp, &endp)) != MP_OK &&
776 (res != MP_TRUNC)) {
777 goto CLEANUP;
778 }
779
780 /* Save this response for later. */
781 save_res = res;
782
783 if (mp_int_compare_zero(&frac) == 0) goto FINISHED;
784
785 /* Discard trailing zeroes (somewhat inefficiently) */
786 while (mp_int_divisible_value(&frac, radix)) {
787 if ((res = mp_int_div_value(&frac, radix, &frac, NULL)) != MP_OK) {
788 goto CLEANUP;
789 }
790 }
791
792 /* Count leading zeros after the decimal point */
793 while (save[num_lz] == '0') {
794 ++num_lz;
795 }
796
797 /* Find the least power of the radix that is at least as large as the
798 significant value of the fractional part, ignoring leading zeroes. */
799 (void)mp_int_set_value(MP_DENOM_P(r), radix);
800
801 while (mp_int_compare(MP_DENOM_P(r), &frac) < 0) {
802 if ((res = mp_int_mul_value(MP_DENOM_P(r), radix, MP_DENOM_P(r))) !=
803 MP_OK) {
804 goto CLEANUP;
805 }
806 }
807
808 /* Also shift by enough to account for leading zeroes */
809 while (num_lz > 0) {
810 if ((res = mp_int_mul_value(MP_DENOM_P(r), radix, MP_DENOM_P(r))) !=
811 MP_OK) {
812 goto CLEANUP;
813 }
814
815 --num_lz;
816 }
817
818 /* Having found this power, shift the numerator leftward that many, digits,
819 and add the nonzero significant digits of the fractional part to get the
820 result. */
821 if ((res = mp_int_mul(MP_NUMER_P(r), MP_DENOM_P(r), MP_NUMER_P(r))) !=
822 MP_OK) {
823 goto CLEANUP;
824 }
825
826 { /* This addition needs to be unsigned. */
828 if ((res = mp_int_add(MP_NUMER_P(r), &frac, MP_NUMER_P(r))) != MP_OK) {
829 goto CLEANUP;
830 }
831
832 MP_NUMER_SIGN(r) = osign;
833 }
834 if ((res = s_rat_reduce(r)) != MP_OK) goto CLEANUP;
835
836 /* At this point, what we return depends on whether reading the fractional
837 part was truncated or not. That information is saved from when we
838 called mp_int_read_string() above. */
839 FINISHED:
840 res = save_res;
841 if (end != NULL) *end = endp;
842
843 CLEANUP:
844 mp_int_clear(&frac);
845
846 return res;
847 }
848}
849
850/* Private functions for internal use. Make unchecked assumptions about format
851 and validity of inputs. */
852
854 mpz_t gcd;
856
857 if (mp_int_compare_zero(MP_NUMER_P(r)) == 0) {
859 return MP_OK;
860 }
861
862 /* If the greatest common divisor of the numerator and denominator is greater
863 than 1, divide it out. */
864 if ((res = mp_int_init(&gcd)) != MP_OK) return res;
865
866 if ((res = mp_int_gcd(MP_NUMER_P(r), MP_DENOM_P(r), &gcd)) != MP_OK) {
867 goto CLEANUP;
868 }
869
870 if (mp_int_compare_value(&gcd, 1) != 0) {
871 if ((res = mp_int_div(MP_NUMER_P(r), &gcd, MP_NUMER_P(r), NULL)) != MP_OK) {
872 goto CLEANUP;
873 }
874 if ((res = mp_int_div(MP_DENOM_P(r), &gcd, MP_DENOM_P(r), NULL)) != MP_OK) {
875 goto CLEANUP;
876 }
877 }
878
879 /* Fix up the signs of numerator and denominator */
880 if (MP_NUMER_SIGN(r) == MP_DENOM_SIGN(r)) {
882 } else {
885 }
886
887CLEANUP:
889
890 return res;
891}
892
894 mp_result (*comb_f)(mp_int, mp_int, mp_int)) {
896
897 /* Shortcut when denominators are already common */
898 if (mp_int_compare(MP_DENOM_P(a), MP_DENOM_P(b)) == 0) {
899 if ((res = (comb_f)(MP_NUMER_P(a), MP_NUMER_P(b), MP_NUMER_P(c))) !=
900 MP_OK) {
901 return res;
902 }
903 if ((res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c))) != MP_OK) {
904 return res;
905 }
906
907 return s_rat_reduce(c);
908 } else {
909 mpz_t temp[2];
910 int last = 0;
911
912 SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(a)), last);
913 SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(b)), last);
914
915 if ((res = mp_int_mul(TEMP(0), MP_DENOM_P(b), TEMP(0))) != MP_OK) {
916 goto CLEANUP;
917 }
918 if ((res = mp_int_mul(TEMP(1), MP_DENOM_P(a), TEMP(1))) != MP_OK) {
919 goto CLEANUP;
920 }
921 if ((res = (comb_f)(TEMP(0), TEMP(1), MP_NUMER_P(c))) != MP_OK) {
922 goto CLEANUP;
923 }
924
926
927 CLEANUP:
928 while (--last >= 0) {
929 mp_int_clear(TEMP(last));
930 }
931
932 if (res == MP_OK) {
933 return s_rat_reduce(c);
934 } else {
935 return res;
936 }
937 }
938}
939
940/* Here there be dragons */
void GMPZAPI() gcd(mp_int rop, mp_int op1, mp_int op2)
int GMPQAPI() cmp(mp_rat op1, mp_rat op2)
unsigned int mp_size
Definition: imath/imath.h:39
long mp_small
Definition: imath/imath.h:41
int mp_result
Definition: imath/imath.h:40
unsigned char mp_sign
Definition: imath/imath.h:38
unsigned long mp_usmall
Definition: imath/imath.h:42
#define TEMP(K)
Definition: imath/imrat.c:36
static mp_result s_rat_reduce(mp_rat r)
Definition: imath/imrat.c:853
#define MP_NUMER_SIGN(Q)
Definition: imath/imrat.c:33
#define SETUP(E, C)
Definition: imath/imrat.c:37
#define MP_DENOM_SIGN(Q)
Definition: imath/imrat.c:34
static mp_result s_rat_combine(mp_rat a, mp_rat b, mp_rat c, mp_result(*comb_f)(mp_int, mp_int, mp_int))
Definition: imath/imrat.c:893
mp_rat mp_rat_alloc(void)
Allocates a fresh zero-valued mpq_t on the heap, returning NULL in case of error.
Definition: imath/imrat.c:64
static mp_int MP_DENOM_P(mp_rat Q)
Definition: imath/imrat.h:47
static mp_int MP_NUMER_P(mp_rat Q)
Definition: imath/imrat.h:44
mp_round_mode
Definition: imath/imrat.h:50
@ MP_ROUND_DOWN
Definition: imath/imrat.h:51
@ MP_ROUND_UP
Definition: imath/imrat.h:53
@ MP_ROUND_HALF_UP
Definition: imath/imrat.h:52
@ MP_ROUND_HALF_DOWN
Definition: imath/imrat.h:54
const char * res
Definition: isl_test.c:775
const char * str
Definition: isl_test.c:2095
#define assert(exp)
a(0)
b(9)
mpz_t num
Definition: imath/imrat.h:39
mp_digit * digits
Definition: imath/imath.h:60
#define mp_int_to_string
Definition: wrap.h:122
#define mp_int_clear
Definition: wrap.h:72
#define mp_int_init_size
Definition: wrap.h:96
#define mp_int_divisible_value
Definition: wrap.h:81
#define mp_rat_is_integer
Definition: wrap.h:147
#define mp_rat_init_size
Definition: wrap.h:146
#define mp_int_read_cstring
Definition: wrap.h:108
#define mp_rat_string_len
Definition: wrap.h:163
#define MP_UNDEF
Definition: wrap.h:13
#define MP_BADARG
Definition: wrap.h:4
#define mp_rat_div
Definition: wrap.h:140
#define mp_rat_compare_zero
Definition: wrap.h:135
#define mp_rat_read_string
Definition: wrap.h:156
#define mp_int_compare_zero
Definition: wrap.h:77
#define mp_int_add_value
Definition: wrap.h:69
#define mp_int_add
Definition: wrap.h:68
#define mp_rat_add
Definition: wrap.h:128
#define mp_rat_compare
Definition: wrap.h:132
#define mp_rat_to_decimal
Definition: wrap.h:166
#define mp_rat_set_uvalue
Definition: wrap.h:160
#define mp_int_string_len
Definition: wrap.h:116
#define mp_rat_read_cdecimal
Definition: wrap.h:153
#define MP_TRUNC
Definition: wrap.h:12
#define mp_int_compare_unsigned
Definition: wrap.h:74
#define mp_rat_expt
Definition: wrap.h:142
#define mp_rat_init_copy
Definition: wrap.h:145
#define mp_rat_mul_int
Definition: wrap.h:149
#define mp_rat_read_ustring
Definition: wrap.h:157
#define mp_rat_neg
Definition: wrap.h:150
#define mp_rat_denom
Definition: wrap.h:138
#define mp_rat_recip
Definition: wrap.h:158
#define mp_int_sub
Definition: wrap.h:117
#define mp_int_init
Definition: wrap.h:94
#define mp_rat_mul
Definition: wrap.h:148
#define mp_rat_reduce
Definition: wrap.h:159
#define mp_rat_zero
Definition: wrap.h:169
#define mp_int_swap
Definition: wrap.h:119
#define mp_int_set_value
Definition: wrap.h:114
#define mp_int_gcd
Definition: wrap.h:93
#define MP_ZPOS
Definition: wrap.h:14
#define mp_rat_numer_ref
Definition: wrap.h:152
#define mp_rat_sub_int
Definition: wrap.h:165
#define MP_NEG
Definition: wrap.h:8
#define mp_rat_clear
Definition: wrap.h:131
#define mp_int_mul_pow2
Definition: wrap.h:104
#define mp_rat_copy
Definition: wrap.h:136
#define mp_rat_init
Definition: wrap.h:144
#define mp_rat_numer
Definition: wrap.h:151
#define mp_rat_to_ints
Definition: wrap.h:167
#define mp_rat_set_value
Definition: wrap.h:161
#define mp_rat_sub
Definition: wrap.h:164
#define mp_rat_denom_ref
Definition: wrap.h:139
#define mp_int_mul_value
Definition: wrap.h:105
#define mp_rat_free
Definition: wrap.h:143
#define mp_int_expt
Definition: wrap.h:85
#define mp_int_abs
Definition: wrap.h:67
#define mp_int_expt_value
Definition: wrap.h:91
#define mp_rat_div_int
Definition: wrap.h:141
#define mp_rat_read_decimal
Definition: wrap.h:155
#define mp_int_to_int
Definition: wrap.h:121
#define mp_rat_to_string
Definition: wrap.h:168
#define mp_int_copy
Definition: wrap.h:78
#define mp_rat_compare_value
Definition: wrap.h:134
#define mp_int_neg
Definition: wrap.h:106
#define mp_rat_compare_unsigned
Definition: wrap.h:133
#define mp_rat_sign
Definition: wrap.h:162
#define mp_int_div_value
Definition: wrap.h:83
#define mp_int_set_uvalue
Definition: wrap.h:113
#define mp_int_compare_value
Definition: wrap.h:76
#define mp_rat_read_cstring
Definition: wrap.h:154
#define mp_rat_add_int
Definition: wrap.h:129
#define mp_int_zero
Definition: wrap.h:126
#define mp_rat_abs
Definition: wrap.h:127
#define mp_int_init_copy
Definition: wrap.h:95
#define mp_int_compare
Definition: wrap.h:73
#define mp_rat_decimal_len
Definition: wrap.h:137
#define mp_int_mul
Definition: wrap.h:103
#define MP_OK
Definition: wrap.h:9
#define mp_int_div
Definition: wrap.h:80
n
Definition: youcefn.c:8