Polly 20.0.0git
ScopHelper.cpp
Go to the documentation of this file.
1//===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Small functions that help with Scop and LLVM-IR.
10//
11//===----------------------------------------------------------------------===//
12
14#include "polly/Options.h"
15#include "polly/ScopInfo.h"
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/Analysis/RegionInfo.h"
19#include "llvm/Analysis/ScalarEvolution.h"
20#include "llvm/Analysis/ScalarEvolutionExpressions.h"
21#include "llvm/Transforms/Utils/BasicBlockUtils.h"
22#include "llvm/Transforms/Utils/LoopUtils.h"
23#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
24#include <optional>
25
26using namespace llvm;
27using namespace polly;
28
29#define DEBUG_TYPE "polly-scop-helper"
30
31static cl::list<std::string> DebugFunctions(
32 "polly-debug-func",
33 cl::desc("Allow calls to the specified functions in SCoPs even if their "
34 "side-effects are unknown. This can be used to do debug output in "
35 "Polly-transformed code."),
36 cl::Hidden, cl::CommaSeparated, cl::cat(PollyCategory));
37
38// Ensures that there is just one predecessor to the entry node from outside the
39// region.
40// The identity of the region entry node is preserved.
41static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI,
42 RegionInfo *RI) {
43 BasicBlock *EnteringBB = R->getEnteringBlock();
44 BasicBlock *Entry = R->getEntry();
45
46 // Before (one of):
47 //
48 // \ / //
49 // EnteringBB //
50 // | \------> //
51 // \ / | //
52 // Entry <--\ Entry <--\ //
53 // / \ / / \ / //
54 // .... .... //
55
56 // Create single entry edge if the region has multiple entry edges.
57 if (!EnteringBB) {
58 SmallVector<BasicBlock *, 4> Preds;
59 for (BasicBlock *P : predecessors(Entry))
60 if (!R->contains(P))
61 Preds.push_back(P);
62
63 BasicBlock *NewEntering =
64 SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI);
65
66 if (RI) {
67 // The exit block of predecessing regions must be changed to NewEntering
68 for (BasicBlock *ExitPred : predecessors(NewEntering)) {
69 Region *RegionOfPred = RI->getRegionFor(ExitPred);
70 if (RegionOfPred->getExit() != Entry)
71 continue;
72
73 while (!RegionOfPred->isTopLevelRegion() &&
74 RegionOfPred->getExit() == Entry) {
75 RegionOfPred->replaceExit(NewEntering);
76 RegionOfPred = RegionOfPred->getParent();
77 }
78 }
79
80 // Make all ancestors use EnteringBB as entry; there might be edges to it
81 Region *AncestorR = R->getParent();
82 RI->setRegionFor(NewEntering, AncestorR);
83 while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) {
84 AncestorR->replaceEntry(NewEntering);
85 AncestorR = AncestorR->getParent();
86 }
87 }
88
89 EnteringBB = NewEntering;
90 }
91 assert(R->getEnteringBlock() == EnteringBB);
92
93 // After:
94 //
95 // \ / //
96 // EnteringBB //
97 // | //
98 // | //
99 // Entry <--\ //
100 // / \ / //
101 // .... //
102}
103
104// Ensure that the region has a single block that branches to the exit node.
105static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI,
106 RegionInfo *RI) {
107 BasicBlock *ExitBB = R->getExit();
108 BasicBlock *ExitingBB = R->getExitingBlock();
109
110 // Before:
111 //
112 // (Region) ______/ //
113 // \ | / //
114 // ExitBB //
115 // / \ //
116
117 if (!ExitingBB) {
118 SmallVector<BasicBlock *, 4> Preds;
119 for (BasicBlock *P : predecessors(ExitBB))
120 if (R->contains(P))
121 Preds.push_back(P);
122
123 // Preds[0] Preds[1] otherBB //
124 // \ | ________/ //
125 // \ | / //
126 // BB //
127 ExitingBB =
128 SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI);
129 // Preds[0] Preds[1] otherBB //
130 // \ / / //
131 // BB.region_exiting / //
132 // \ / //
133 // BB //
134
135 if (RI)
136 RI->setRegionFor(ExitingBB, R);
137
138 // Change the exit of nested regions, but not the region itself,
139 R->replaceExitRecursive(ExitingBB);
140 R->replaceExit(ExitBB);
141 }
142 assert(ExitingBB == R->getExitingBlock());
143
144 // After:
145 //
146 // \ / //
147 // ExitingBB _____/ //
148 // \ / //
149 // ExitBB //
150 // / \ //
151}
152
153void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI,
154 RegionInfo *RI) {
155 assert(R && !R->isTopLevelRegion());
156 assert(!RI || RI == R->getRegionInfo());
157 assert((!RI || DT) &&
158 "RegionInfo requires DominatorTree to be updated as well");
159
160 simplifyRegionEntry(R, DT, LI, RI);
161 simplifyRegionExit(R, DT, LI, RI);
162 assert(R->isSimple());
163}
164
165// Split the block into two successive blocks.
166//
167// Like llvm::SplitBlock, but also preserves RegionInfo
168static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt,
169 DominatorTree *DT, llvm::LoopInfo *LI,
170 RegionInfo *RI) {
171 assert(Old && SplitPt);
172
173 // Before:
174 //
175 // \ / //
176 // Old //
177 // / \ //
178
179 BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI);
180
181 if (RI) {
182 Region *R = RI->getRegionFor(Old);
183 RI->setRegionFor(NewBlock, R);
184 }
185
186 // After:
187 //
188 // \ / //
189 // Old //
190 // | //
191 // NewBlock //
192 // / \ //
193
194 return NewBlock;
195}
196
197void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, DominatorTree *DT,
198 LoopInfo *LI, RegionInfo *RI) {
199 // Find first non-alloca instruction. Every basic block has a non-alloca
200 // instruction, as every well formed basic block has a terminator.
201 BasicBlock::iterator I = EntryBlock->begin();
202 while (isa<AllocaInst>(I))
203 ++I;
204
205 // splitBlock updates DT, LI and RI.
206 splitBlock(EntryBlock, &*I, DT, LI, RI);
207}
208
209void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) {
210 auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
211 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
212 auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>();
213 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
214 RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>();
215 RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr;
216
217 // splitBlock updates DT, LI and RI.
218 polly::splitEntryBlockForAlloca(EntryBlock, DT, LI, RI);
219}
220
223 DebugLoc Loc, polly::AssumptionSign Sign,
224 BasicBlock *BB, bool RTC) {
225 assert((Set.is_params() || BB) &&
226 "Assumptions without a basic block must be parameter sets");
227 if (RecordedAssumptions)
228 RecordedAssumptions->push_back({Kind, Sign, Set, Loc, BB, RTC});
229}
230
231/// ScopExpander generates IR the the value of a SCEV that represents a value
232/// from a SCoP.
233///
234/// IMPORTANT: There are two ScalarEvolutions at play here. First, the SE that
235/// was used to analyze the original SCoP (not actually referenced anywhere
236/// here, but passed as argument to make the distinction clear). Second, GenSE
237/// which is the SE for the function that the code is emitted into. SE and GenSE
238/// may be different when the generated code is to be emitted into an outlined
239/// function, e.g. for a parallel loop. That is, each SCEV is to be used only by
240/// the SE that "owns" it and ScopExpander handles the translation between them.
241/// The SCEVVisitor methods are only to be called on SCEVs of the original SE.
242/// Their job is to create a new SCEV for GenSE. The nested SCEVExpander is to
243/// be used only with SCEVs belonging to GenSE. Currently SCEVs do not store a
244/// reference to the ScalarEvolution they belong to, so a mixup does not
245/// immediately cause a crash but certainly is a violation of its interface.
246///
247/// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem
248/// instruction but just use it, if it is referenced as a SCEVUnknown. We want
249/// however to generate new code if the instruction is in the analyzed region
250/// and we generate code outside/in front of that region. Hence, we generate the
251/// code for the SDiv/SRem operands in front of the analyzed region and then
252/// create a new SDiv/SRem operation there too.
253struct ScopExpander final : SCEVVisitor<ScopExpander, const SCEV *> {
254 friend struct SCEVVisitor<ScopExpander, const SCEV *>;
255
256 explicit ScopExpander(const Region &R, ScalarEvolution &SE, Function *GenFn,
257 ScalarEvolution &GenSE, const DataLayout &DL,
258 const char *Name, ValueMapT *VMap,
259 LoopToScevMapT *LoopMap, BasicBlock *RTCBB)
260 : Expander(GenSE, DL, Name, /*PreserveLCSSA=*/false), Name(Name), R(R),
262 }
263
264 Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *IP) {
265 assert(isInGenRegion(IP) &&
266 "ScopExpander assumes to be applied to generated code region");
267 const SCEV *GenE = visit(E);
268 return Expander.expandCodeFor(GenE, Ty, IP);
269 }
270
271 const SCEV *visit(const SCEV *E) {
272 // Cache the expansion results for intermediate SCEV expressions. A SCEV
273 // expression can refer to an operand multiple times (e.g. "x*x), so
274 // a naive visitor takes exponential time.
275 if (SCEVCache.count(E))
276 return SCEVCache[E];
277 const SCEV *Result = SCEVVisitor::visit(E);
278 SCEVCache[E] = Result;
279 return Result;
280 }
281
282private:
283 SCEVExpander Expander;
284 const char *Name;
285 const Region &R;
288 BasicBlock *RTCBB;
289 DenseMap<const SCEV *, const SCEV *> SCEVCache;
290
291 ScalarEvolution &GenSE;
293
294 /// Is the instruction part of the original SCoP (in contrast to be located in
295 /// the code-generated region)?
296 bool isInOrigRegion(Instruction *Inst) {
297 Function *Fn = R.getEntry()->getParent();
298 bool isInOrigRegion = Inst->getFunction() == Fn && R.contains(Inst);
299 assert((isInOrigRegion || GenFn == Inst->getFunction()) &&
300 "Instruction expected to be either in the SCoP or the translated "
301 "region");
302 return isInOrigRegion;
303 }
304
305 bool isInGenRegion(Instruction *Inst) { return !isInOrigRegion(Inst); }
306
307 const SCEV *visitGenericInst(const SCEVUnknown *E, Instruction *Inst,
308 Instruction *IP) {
309 if (!Inst || isInGenRegion(Inst))
310 return E;
311
312 assert(!Inst->mayThrow() && !Inst->mayReadOrWriteMemory() &&
313 !isa<PHINode>(Inst));
314
315 auto *InstClone = Inst->clone();
316 for (auto &Op : Inst->operands()) {
317 assert(GenSE.isSCEVable(Op->getType()));
318 auto *OpSCEV = GenSE.getSCEV(Op);
319 auto *OpClone = expandCodeFor(OpSCEV, Op->getType(), IP);
320 InstClone->replaceUsesOfWith(Op, OpClone);
321 }
322
323 InstClone->setName(Name + Inst->getName());
324 InstClone->insertBefore(IP);
325 return GenSE.getSCEV(InstClone);
326 }
327
328 const SCEV *visitUnknown(const SCEVUnknown *E) {
329
330 // If a value mapping was given try if the underlying value is remapped.
331 Value *NewVal = VMap ? VMap->lookup(E->getValue()) : nullptr;
332 if (NewVal) {
333 auto *NewE = GenSE.getSCEV(NewVal);
334
335 // While the mapped value might be different the SCEV representation might
336 // not be. To this end we will check before we go into recursion here.
337 // FIXME: SCEVVisitor must only visit SCEVs that belong to the original
338 // SE. This calls it on SCEVs that belong GenSE.
339 if (E != NewE)
340 return visit(NewE);
341 }
342
343 Instruction *Inst = dyn_cast<Instruction>(E->getValue());
344 Instruction *IP;
345 if (Inst && isInGenRegion(Inst))
346 IP = Inst;
347 else if (R.getEntry()->getParent() != GenFn) {
348 // RTCBB is in the original function, but we are generating for a
349 // subfunction so we cannot emit to RTCBB. Usually, we land here only
350 // because E->getValue() is not an instruction but a global or constant
351 // which do not need to emit anything.
352 IP = GenFn->getEntryBlock().getTerminator();
353 } else if (Inst && RTCBB->getParent() == Inst->getFunction())
354 IP = RTCBB->getTerminator();
355 else
356 IP = RTCBB->getParent()->getEntryBlock().getTerminator();
357
358 if (!Inst || (Inst->getOpcode() != Instruction::SRem &&
359 Inst->getOpcode() != Instruction::SDiv))
360 return visitGenericInst(E, Inst, IP);
361
362 const SCEV *LHSScev = GenSE.getSCEV(Inst->getOperand(0));
363 const SCEV *RHSScev = GenSE.getSCEV(Inst->getOperand(1));
364
365 if (!GenSE.isKnownNonZero(RHSScev))
366 RHSScev = GenSE.getUMaxExpr(RHSScev, GenSE.getConstant(E->getType(), 1));
367
368 Value *LHS = expandCodeFor(LHSScev, E->getType(), IP);
369 Value *RHS = expandCodeFor(RHSScev, E->getType(), IP);
370
371 Inst =
372 BinaryOperator::Create((Instruction::BinaryOps)Inst->getOpcode(), LHS,
373 RHS, Inst->getName() + Name, IP->getIterator());
374 return GenSE.getSCEV(Inst);
375 }
376
377 /// The following functions will just traverse the SCEV and rebuild it using
378 /// GenSE and the new operands returned by the traversal.
379 ///
380 ///{
381 const SCEV *visitConstant(const SCEVConstant *E) { return E; }
382 const SCEV *visitVScale(const SCEVVScale *E) { return E; }
383 const SCEV *visitPtrToIntExpr(const SCEVPtrToIntExpr *E) {
384 return GenSE.getPtrToIntExpr(visit(E->getOperand()), E->getType());
385 }
386 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) {
387 return GenSE.getTruncateExpr(visit(E->getOperand()), E->getType());
388 }
389 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) {
390 return GenSE.getZeroExtendExpr(visit(E->getOperand()), E->getType());
391 }
392 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) {
393 return GenSE.getSignExtendExpr(visit(E->getOperand()), E->getType());
394 }
395 const SCEV *visitUDivExpr(const SCEVUDivExpr *E) {
396 auto *RHSScev = visit(E->getRHS());
397 if (!GenSE.isKnownNonZero(RHSScev))
398 RHSScev = GenSE.getUMaxExpr(RHSScev, GenSE.getConstant(E->getType(), 1));
399 return GenSE.getUDivExpr(visit(E->getLHS()), RHSScev);
400 }
401 const SCEV *visitAddExpr(const SCEVAddExpr *E) {
402 SmallVector<const SCEV *, 4> NewOps;
403 for (const SCEV *Op : E->operands())
404 NewOps.push_back(visit(Op));
405 return GenSE.getAddExpr(NewOps);
406 }
407 const SCEV *visitMulExpr(const SCEVMulExpr *E) {
408 SmallVector<const SCEV *, 4> NewOps;
409 for (const SCEV *Op : E->operands())
410 NewOps.push_back(visit(Op));
411 return GenSE.getMulExpr(NewOps);
412 }
413 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) {
414 SmallVector<const SCEV *, 4> NewOps;
415 for (const SCEV *Op : E->operands())
416 NewOps.push_back(visit(Op));
417 return GenSE.getUMaxExpr(NewOps);
418 }
419 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) {
420 SmallVector<const SCEV *, 4> NewOps;
421 for (const SCEV *Op : E->operands())
422 NewOps.push_back(visit(Op));
423 return GenSE.getSMaxExpr(NewOps);
424 }
425 const SCEV *visitUMinExpr(const SCEVUMinExpr *E) {
426 SmallVector<const SCEV *, 4> NewOps;
427 for (const SCEV *Op : E->operands())
428 NewOps.push_back(visit(Op));
429 return GenSE.getUMinExpr(NewOps);
430 }
431 const SCEV *visitSMinExpr(const SCEVSMinExpr *E) {
432 SmallVector<const SCEV *, 4> NewOps;
433 for (const SCEV *Op : E->operands())
434 NewOps.push_back(visit(Op));
435 return GenSE.getSMinExpr(NewOps);
436 }
437 const SCEV *visitSequentialUMinExpr(const SCEVSequentialUMinExpr *E) {
438 SmallVector<const SCEV *, 4> NewOps;
439 for (const SCEV *Op : E->operands())
440 NewOps.push_back(visit(Op));
441 return GenSE.getUMinExpr(NewOps, /*Sequential=*/true);
442 }
443 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) {
444 SmallVector<const SCEV *, 4> NewOps;
445 for (const SCEV *Op : E->operands())
446 NewOps.push_back(visit(Op));
447
448 const Loop *L = E->getLoop();
449 const SCEV *GenLRepl = LoopMap ? LoopMap->lookup(L) : nullptr;
450 if (!GenLRepl)
451 return GenSE.getAddRecExpr(NewOps, L, E->getNoWrapFlags());
452
453 // evaluateAtIteration replaces the SCEVAddrExpr with a direct calculation.
454 const SCEV *Evaluated =
455 SCEVAddRecExpr::evaluateAtIteration(NewOps, GenLRepl, GenSE);
456
457 // FIXME: This emits a SCEV for GenSE (since GenLRepl will refer to the
458 // induction variable of a generated loop), so we should not use SCEVVisitor
459 // with it. Howver, it still contains references to the SCoP region.
460 return visit(Evaluated);
461 }
462 ///}
463};
464
465Value *polly::expandCodeFor(Scop &S, llvm::ScalarEvolution &SE,
466 llvm::Function *GenFn, ScalarEvolution &GenSE,
467 const DataLayout &DL, const char *Name,
468 const SCEV *E, Type *Ty, Instruction *IP,
469 ValueMapT *VMap, LoopToScevMapT *LoopMap,
470 BasicBlock *RTCBB) {
471 ScopExpander Expander(S.getRegion(), SE, GenFn, GenSE, DL, Name, VMap,
472 LoopMap, RTCBB);
473 return Expander.expandCodeFor(E, Ty, IP);
474}
475
477 if (BranchInst *BR = dyn_cast<BranchInst>(TI)) {
478 if (BR->isUnconditional())
479 return ConstantInt::getTrue(Type::getInt1Ty(TI->getContext()));
480
481 return BR->getCondition();
482 }
483
484 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
485 return SI->getCondition();
486
487 return nullptr;
488}
489
490Loop *polly::getLoopSurroundingScop(Scop &S, LoopInfo &LI) {
491 // Start with the smallest loop containing the entry and expand that
492 // loop until it contains all blocks in the region. If there is a loop
493 // containing all blocks in the region check if it is itself contained
494 // and if so take the parent loop as it will be the smallest containing
495 // the region but not contained by it.
496 Loop *L = LI.getLoopFor(S.getEntry());
497 while (L) {
498 bool AllContained = true;
499 for (auto *BB : S.blocks())
500 AllContained &= L->contains(BB);
501 if (AllContained)
502 break;
503 L = L->getParentLoop();
504 }
505
506 return L ? (S.contains(L) ? L->getParentLoop() : L) : nullptr;
507}
508
509unsigned polly::getNumBlocksInLoop(Loop *L) {
510 unsigned NumBlocks = L->getNumBlocks();
511 SmallVector<BasicBlock *, 4> ExitBlocks;
512 L->getExitBlocks(ExitBlocks);
513
514 for (auto ExitBlock : ExitBlocks) {
515 if (isa<UnreachableInst>(ExitBlock->getTerminator()))
516 NumBlocks++;
517 }
518 return NumBlocks;
519}
520
521unsigned polly::getNumBlocksInRegionNode(RegionNode *RN) {
522 if (!RN->isSubRegion())
523 return 1;
524
525 Region *R = RN->getNodeAs<Region>();
526 return std::distance(R->block_begin(), R->block_end());
527}
528
529Loop *polly::getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) {
530 if (!RN->isSubRegion()) {
531 BasicBlock *BB = RN->getNodeAs<BasicBlock>();
532 Loop *L = LI.getLoopFor(BB);
533
534 // Unreachable statements are not considered to belong to a LLVM loop, as
535 // they are not part of an actual loop in the control flow graph.
536 // Nevertheless, we handle certain unreachable statements that are common
537 // when modeling run-time bounds checks as being part of the loop to be
538 // able to model them and to later eliminate the run-time bounds checks.
539 //
540 // Specifically, for basic blocks that terminate in an unreachable and
541 // where the immediate predecessor is part of a loop, we assume these
542 // basic blocks belong to the loop the predecessor belongs to. This
543 // allows us to model the following code.
544 //
545 // for (i = 0; i < N; i++) {
546 // if (i > 1024)
547 // abort(); <- this abort might be translated to an
548 // unreachable
549 //
550 // A[i] = ...
551 // }
552 if (!L && isa<UnreachableInst>(BB->getTerminator()) && BB->getPrevNode())
553 L = LI.getLoopFor(BB->getPrevNode());
554 return L;
555 }
556
557 Region *NonAffineSubRegion = RN->getNodeAs<Region>();
558 Loop *L = LI.getLoopFor(NonAffineSubRegion->getEntry());
559 while (L && NonAffineSubRegion->contains(L))
560 L = L->getParentLoop();
561 return L;
562}
563
564static bool hasVariantIndex(GetElementPtrInst *Gep, Loop *L, Region &R,
565 ScalarEvolution &SE) {
566 for (const Use &Val : llvm::drop_begin(Gep->operands(), 1)) {
567 const SCEV *PtrSCEV = SE.getSCEVAtScope(Val, L);
568 Loop *OuterLoop = R.outermostLoopInRegion(L);
569 if (!SE.isLoopInvariant(PtrSCEV, OuterLoop))
570 return true;
571 }
572 return false;
573}
574
575bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI,
576 ScalarEvolution &SE, const DominatorTree &DT,
577 const InvariantLoadsSetTy &KnownInvariantLoads) {
578 Loop *L = LI.getLoopFor(LInst->getParent());
579 auto *Ptr = LInst->getPointerOperand();
580
581 // A LoadInst is hoistable if the address it is loading from is also
582 // invariant; in this case: another invariant load (whether that address
583 // is also not written to has to be checked separately)
584 // TODO: This only checks for a LoadInst->GetElementPtrInst->LoadInst
585 // pattern generated by the Chapel frontend, but generally this applies
586 // for any chain of instruction that does not also depend on any
587 // induction variable
588 if (auto *GepInst = dyn_cast<GetElementPtrInst>(Ptr)) {
589 if (!hasVariantIndex(GepInst, L, R, SE)) {
590 if (auto *DecidingLoad =
591 dyn_cast<LoadInst>(GepInst->getPointerOperand())) {
592 if (KnownInvariantLoads.count(DecidingLoad))
593 return true;
594 }
595 }
596 }
597
598 const SCEV *PtrSCEV = SE.getSCEVAtScope(Ptr, L);
599 while (L && R.contains(L)) {
600 if (!SE.isLoopInvariant(PtrSCEV, L))
601 return false;
602 L = L->getParentLoop();
603 }
604
605 for (auto *User : Ptr->users()) {
606 auto *UserI = dyn_cast<Instruction>(User);
607 if (!UserI || !R.contains(UserI))
608 continue;
609 if (!UserI->mayWriteToMemory())
610 continue;
611
612 auto &BB = *UserI->getParent();
613 if (DT.dominates(&BB, LInst->getParent()))
614 return false;
615
616 bool DominatesAllPredecessors = true;
617 if (R.isTopLevelRegion()) {
618 for (BasicBlock &I : *R.getEntry()->getParent())
619 if (isa<ReturnInst>(I.getTerminator()) && !DT.dominates(&BB, &I))
620 DominatesAllPredecessors = false;
621 } else {
622 for (auto Pred : predecessors(R.getExit()))
623 if (R.contains(Pred) && !DT.dominates(&BB, Pred))
624 DominatesAllPredecessors = false;
625 }
626
627 if (!DominatesAllPredecessors)
628 continue;
629
630 return false;
631 }
632
633 return true;
634}
635
636bool polly::isIgnoredIntrinsic(const Value *V) {
637 if (auto *IT = dyn_cast<IntrinsicInst>(V)) {
638 switch (IT->getIntrinsicID()) {
639 // Lifetime markers are supported/ignored.
640 case llvm::Intrinsic::lifetime_start:
641 case llvm::Intrinsic::lifetime_end:
642 // Invariant markers are supported/ignored.
643 case llvm::Intrinsic::invariant_start:
644 case llvm::Intrinsic::invariant_end:
645 // Some misc annotations are supported/ignored.
646 case llvm::Intrinsic::var_annotation:
647 case llvm::Intrinsic::ptr_annotation:
648 case llvm::Intrinsic::annotation:
649 case llvm::Intrinsic::donothing:
650 case llvm::Intrinsic::assume:
651 // Some debug info intrinsics are supported/ignored.
652 case llvm::Intrinsic::dbg_value:
653 case llvm::Intrinsic::dbg_declare:
654 return true;
655 default:
656 break;
657 }
658 }
659 return false;
660}
661
662bool polly::canSynthesize(const Value *V, const Scop &S, ScalarEvolution *SE,
663 Loop *Scope) {
664 if (!V || !SE->isSCEVable(V->getType()))
665 return false;
666
667 const InvariantLoadsSetTy &ILS = S.getRequiredInvariantLoads();
668 if (const SCEV *Scev = SE->getSCEVAtScope(const_cast<Value *>(V), Scope))
669 if (!isa<SCEVCouldNotCompute>(Scev))
670 if (!hasScalarDepsInsideRegion(Scev, &S.getRegion(), Scope, false, ILS))
671 return true;
672
673 return false;
674}
675
676llvm::BasicBlock *polly::getUseBlock(const llvm::Use &U) {
677 Instruction *UI = dyn_cast<Instruction>(U.getUser());
678 if (!UI)
679 return nullptr;
680
681 if (PHINode *PHI = dyn_cast<PHINode>(UI))
682 return PHI->getIncomingBlock(U);
683
684 return UI->getParent();
685}
686
687llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI,
688 const BoxedLoopsSetTy &BoxedLoops) {
689 while (BoxedLoops.count(L))
690 L = L->getParentLoop();
691 return L;
692}
693
694llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::BasicBlock *BB,
695 llvm::LoopInfo &LI,
696 const BoxedLoopsSetTy &BoxedLoops) {
697 Loop *L = LI.getLoopFor(BB);
698 return getFirstNonBoxedLoopFor(L, LI, BoxedLoops);
699}
700
701bool polly::isDebugCall(Instruction *Inst) {
702 auto *CI = dyn_cast<CallInst>(Inst);
703 if (!CI)
704 return false;
705
706 Function *CF = CI->getCalledFunction();
707 if (!CF)
708 return false;
709
710 return std::find(DebugFunctions.begin(), DebugFunctions.end(),
711 CF->getName()) != DebugFunctions.end();
712}
713
714static bool hasDebugCall(BasicBlock *BB) {
715 for (Instruction &Inst : *BB) {
716 if (isDebugCall(&Inst))
717 return true;
718 }
719 return false;
720}
721
723 // Quick skip if no debug functions have been defined.
724 if (DebugFunctions.empty())
725 return false;
726
727 if (!Stmt)
728 return false;
729
730 for (Instruction *Inst : Stmt->getInstructions())
731 if (isDebugCall(Inst))
732 return true;
733
734 if (Stmt->isRegionStmt()) {
735 for (BasicBlock *RBB : Stmt->getRegion()->blocks())
736 if (RBB != Stmt->getEntryBlock() && ::hasDebugCall(RBB))
737 return true;
738 }
739
740 return false;
741}
742
743/// Find a property in a LoopID.
744static MDNode *findNamedMetadataNode(MDNode *LoopMD, StringRef Name) {
745 if (!LoopMD)
746 return nullptr;
747 for (const MDOperand &X : drop_begin(LoopMD->operands(), 1)) {
748 auto *OpNode = dyn_cast<MDNode>(X.get());
749 if (!OpNode)
750 continue;
751
752 auto *OpName = dyn_cast<MDString>(OpNode->getOperand(0));
753 if (!OpName)
754 continue;
755 if (OpName->getString() == Name)
756 return OpNode;
757 }
758 return nullptr;
759}
760
761static std::optional<const MDOperand *> findNamedMetadataArg(MDNode *LoopID,
762 StringRef Name) {
763 MDNode *MD = findNamedMetadataNode(LoopID, Name);
764 if (!MD)
765 return std::nullopt;
766 switch (MD->getNumOperands()) {
767 case 1:
768 return nullptr;
769 case 2:
770 return &MD->getOperand(1);
771 default:
772 llvm_unreachable("loop metadata has 0 or 1 operand");
773 }
774}
775
776std::optional<Metadata *> polly::findMetadataOperand(MDNode *LoopMD,
777 StringRef Name) {
778 MDNode *MD = findNamedMetadataNode(LoopMD, Name);
779 if (!MD)
780 return std::nullopt;
781 switch (MD->getNumOperands()) {
782 case 1:
783 return nullptr;
784 case 2:
785 return MD->getOperand(1).get();
786 default:
787 llvm_unreachable("loop metadata must have 0 or 1 operands");
788 }
789}
790
791static std::optional<bool> getOptionalBoolLoopAttribute(MDNode *LoopID,
792 StringRef Name) {
793 MDNode *MD = findNamedMetadataNode(LoopID, Name);
794 if (!MD)
795 return std::nullopt;
796 switch (MD->getNumOperands()) {
797 case 1:
798 return true;
799 case 2:
800 if (ConstantInt *IntMD =
801 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
802 return IntMD->getZExtValue();
803 return true;
804 }
805 llvm_unreachable("unexpected number of options");
806}
807
808bool polly::getBooleanLoopAttribute(MDNode *LoopID, StringRef Name) {
809 return getOptionalBoolLoopAttribute(LoopID, Name).value_or(false);
810}
811
812std::optional<int> polly::getOptionalIntLoopAttribute(MDNode *LoopID,
813 StringRef Name) {
814 const MDOperand *AttrMD =
815 findNamedMetadataArg(LoopID, Name).value_or(nullptr);
816 if (!AttrMD)
817 return std::nullopt;
818
819 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
820 if (!IntMD)
821 return std::nullopt;
822
823 return IntMD->getSExtValue();
824}
825
827 return llvm::hasDisableAllTransformsHint(L);
828}
829
830bool polly::hasDisableAllTransformsHint(llvm::MDNode *LoopID) {
831 return getBooleanLoopAttribute(LoopID, "llvm.loop.disable_nonforced");
832}
833
835 assert(Attr && "Must be a valid BandAttr");
836
837 // The name "Loop" signals that this id contains a pointer to a BandAttr.
838 // The ScheduleOptimizer also uses the string "Inter iteration alias-free" in
839 // markers, but it's user pointer is an llvm::Value.
840 isl::id Result = isl::id::alloc(Ctx, "Loop with Metadata", Attr);
841 Result = isl::manage(isl_id_set_free_user(Result.release(), [](void *Ptr) {
842 BandAttr *Attr = reinterpret_cast<BandAttr *>(Ptr);
843 delete Attr;
844 }));
845 return Result;
846}
847
849 if (!L)
850 return {};
851
852 // A loop without metadata does not need to be annotated.
853 MDNode *LoopID = L->getLoopID();
854 if (!LoopID)
855 return {};
856
857 BandAttr *Attr = new BandAttr();
858 Attr->OriginalLoop = L;
859 Attr->Metadata = L->getLoopID();
860
861 return getIslLoopAttr(Ctx, Attr);
862}
863
864bool polly::isLoopAttr(const isl::id &Id) {
865 if (Id.is_null())
866 return false;
867
868 return Id.get_name() == "Loop with Metadata";
869}
870
872 if (!isLoopAttr(Id))
873 return nullptr;
874
875 return reinterpret_cast<BandAttr *>(Id.get_user());
876}
polly dump Polly Dump Function
llvm::cl::OptionCategory PollyCategory
static RegisterPass< ScopViewerWrapperPass > X("view-scops", "Polly - View Scops of function")
static std::optional< bool > getOptionalBoolLoopAttribute(MDNode *LoopID, StringRef Name)
Definition: ScopHelper.cpp:791
static BasicBlock * splitBlock(BasicBlock *Old, Instruction *SplitPt, DominatorTree *DT, llvm::LoopInfo *LI, RegionInfo *RI)
Definition: ScopHelper.cpp:168
static bool hasDebugCall(BasicBlock *BB)
Definition: ScopHelper.cpp:714
static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI, RegionInfo *RI)
Definition: ScopHelper.cpp:41
static std::optional< const MDOperand * > findNamedMetadataArg(MDNode *LoopID, StringRef Name)
Definition: ScopHelper.cpp:761
static cl::list< std::string > DebugFunctions("polly-debug-func", cl::desc("Allow calls to the specified functions in SCoPs even if their " "side-effects are unknown. This can be used to do debug output in " "Polly-transformed code."), cl::Hidden, cl::CommaSeparated, cl::cat(PollyCategory))
static MDNode * findNamedMetadataNode(MDNode *LoopMD, StringRef Name)
Find a property in a LoopID.
Definition: ScopHelper.cpp:744
static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI, RegionInfo *RI)
Definition: ScopHelper.cpp:105
static bool hasVariantIndex(GetElementPtrInst *Gep, Loop *L, Region &R, ScalarEvolution &SE)
Definition: ScopHelper.cpp:564
__isl_give isl_id * release()
bool is_null() const
std::string get_name() const
void * get_user() const
static isl::id alloc(isl::ctx ctx, const std::string &name, void *user)
boolean is_params() const
Statement of the Scop.
Definition: ScopInfo.h:1140
BasicBlock * getEntryBlock() const
Return a BasicBlock from this statement.
Definition: ScopInfo.cpp:1221
const std::vector< Instruction * > & getInstructions() const
Definition: ScopInfo.h:1531
Region * getRegion() const
Get the region represented by this ScopStmt (if any).
Definition: ScopInfo.h:1330
bool isRegionStmt() const
Return true if this statement represents a whole region.
Definition: ScopInfo.h:1333
Static Control Part.
Definition: ScopInfo.h:1630
__isl_give isl_id * isl_id_set_free_user(__isl_take isl_id *id, void(*free_user)(void *user))
Definition: isl_id.c:183
#define assert(exp)
boolean manage(isl_bool val)
This file contains the declaration of the PolyhedralInfo class, which will provide an interface to ex...
llvm::Loop * getRegionNodeLoop(llvm::RegionNode *RN, llvm::LoopInfo &LI)
Return the smallest loop surrounding RN.
llvm::Value * getConditionFromTerminator(llvm::Instruction *TI)
Return the condition for the terminator TI.
bool isLoopAttr(const isl::id &Id)
Is Id representing a loop?
Definition: ScopHelper.cpp:864
std::optional< llvm::Metadata * > findMetadataOperand(llvm::MDNode *LoopMD, llvm::StringRef Name)
Find a property value in a LoopID.
unsigned getNumBlocksInRegionNode(llvm::RegionNode *RN)
Get the number of blocks in RN.
llvm::Loop * getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI, const BoxedLoopsSetTy &BoxedLoops)
Definition: ScopHelper.cpp:687
AssumptionSign
Enum to distinguish between assumptions and restrictions.
Definition: ScopHelper.h:57
@ Value
MemoryKind::Value: Models an llvm::Value.
@ PHI
MemoryKind::PHI: Models PHI nodes within the SCoP.
bool hasDisableAllTransformsHint(llvm::Loop *L)
Does the loop's LoopID contain a 'llvm.loop.disable_heuristics' property?
std::optional< int > getOptionalIntLoopAttribute(llvm::MDNode *LoopID, llvm::StringRef Name)
Find an integers property value in a LoopID.
llvm::SmallVector< Assumption, 8 > RecordedAssumptionsTy
Definition: ScopHelper.h:80
bool isDebugCall(llvm::Instruction *Inst)
Is the given instruction a call to a debug function?
bool hasDebugCall(ScopStmt *Stmt)
Does the statement contain a call to a debug function?
Definition: ScopHelper.cpp:722
BandAttr * getLoopAttr(const isl::id &Id)
Return the BandAttr of a loop's isl::id.
Definition: ScopHelper.cpp:871
llvm::BasicBlock * getUseBlock(const llvm::Use &U)
Return the block in which a value is used.
Definition: ScopHelper.cpp:676
llvm::Value * expandCodeFor(Scop &S, llvm::ScalarEvolution &SE, llvm::Function *GenFn, llvm::ScalarEvolution &GenSE, const llvm::DataLayout &DL, const char *Name, const llvm::SCEV *E, llvm::Type *Ty, llvm::Instruction *IP, ValueMapT *VMap, LoopToScevMapT *LoopMap, llvm::BasicBlock *RTCBB)
Wrapper for SCEVExpander extended to all Polly features.
llvm::Loop * getLoopSurroundingScop(Scop &S, llvm::LoopInfo &LI)
Get the smallest loop that contains S but is not in S.
llvm::SetVector< llvm::AssertingVH< llvm::LoadInst > > InvariantLoadsSetTy
Type for a set of invariant loads.
Definition: ScopHelper.h:109
void recordAssumption(RecordedAssumptionsTy *RecordedAssumptions, AssumptionKind Kind, isl::set Set, llvm::DebugLoc Loc, AssumptionSign Sign, llvm::BasicBlock *BB=nullptr, bool RTC=true)
Record an assumption for later addition to the assumed context.
llvm::SetVector< const llvm::Loop * > BoxedLoopsSetTy
Set of loops (used to remember loops in non-affine subregions).
Definition: ScopHelper.h:115
isl::id getIslLoopAttr(isl::ctx Ctx, BandAttr *Attr)
Get an isl::id representing a loop.
Definition: ScopHelper.cpp:834
bool isHoistableLoad(llvm::LoadInst *LInst, llvm::Region &R, llvm::LoopInfo &LI, llvm::ScalarEvolution &SE, const llvm::DominatorTree &DT, const InvariantLoadsSetTy &KnownInvariantLoads)
Check if LInst can be hoisted in R.
void splitEntryBlockForAlloca(llvm::BasicBlock *EntryBlock, llvm::Pass *P)
Split the entry block of a function to store the newly inserted allocations outside of all Scops.
isl::id createIslLoopAttr(isl::ctx Ctx, llvm::Loop *L)
Create an isl::id that identifies an original loop.
bool hasScalarDepsInsideRegion(const llvm::SCEV *Expr, const llvm::Region *R, llvm::Loop *Scope, bool AllowLoops, const InvariantLoadsSetTy &ILS)
Returns true when the SCEV contains references to instructions within the region.
llvm::DenseMap< llvm::AssertingVH< llvm::Value >, llvm::AssertingVH< llvm::Value > > ValueMapT
Type to remap values.
Definition: ScopHelper.h:106
AssumptionKind
Enumeration of assumptions Polly can take.
Definition: ScopHelper.h:43
llvm::DenseMap< const llvm::Loop *, const llvm::SCEV * > LoopToScevMapT
Same as llvm/Analysis/ScalarEvolutionExpressions.h.
Definition: ScopHelper.h:40
bool isIgnoredIntrinsic(const llvm::Value *V)
Return true iff V is an intrinsic that we ignore during code generation.
void simplifyRegion(llvm::Region *R, llvm::DominatorTree *DT, llvm::LoopInfo *LI, llvm::RegionInfo *RI)
Simplify the region to have a single unconditional entry edge and a single exit edge.
bool canSynthesize(const llvm::Value *V, const Scop &S, llvm::ScalarEvolution *SE, llvm::Loop *Scope)
Check whether a value an be synthesized by the code generator.
bool getBooleanLoopAttribute(llvm::MDNode *LoopID, llvm::StringRef Name)
Find a boolean property value in a LoopID.
unsigned getNumBlocksInLoop(llvm::Loop *L)
Get the number of blocks in L.
ScopExpander generates IR the the value of a SCEV that represents a value from a SCoP.
Definition: ScopHelper.cpp:253
const SCEV * visit(const SCEV *E)
Definition: ScopHelper.cpp:271
const SCEV * visitAddExpr(const SCEVAddExpr *E)
Definition: ScopHelper.cpp:401
ValueMapT * VMap
Definition: ScopHelper.cpp:286
SCEVExpander Expander
Definition: ScopHelper.cpp:283
ScalarEvolution & GenSE
Definition: ScopHelper.cpp:291
const SCEV * visitUMaxExpr(const SCEVUMaxExpr *E)
Definition: ScopHelper.cpp:413
Function * GenFn
Definition: ScopHelper.cpp:292
const SCEV * visitUMinExpr(const SCEVUMinExpr *E)
Definition: ScopHelper.cpp:425
const SCEV * visitUnknown(const SCEVUnknown *E)
Definition: ScopHelper.cpp:328
const Region & R
Definition: ScopHelper.cpp:285
const SCEV * visitGenericInst(const SCEVUnknown *E, Instruction *Inst, Instruction *IP)
Definition: ScopHelper.cpp:307
const char * Name
Definition: ScopHelper.cpp:284
const SCEV * visitAddRecExpr(const SCEVAddRecExpr *E)
Definition: ScopHelper.cpp:443
const SCEV * visitPtrToIntExpr(const SCEVPtrToIntExpr *E)
Definition: ScopHelper.cpp:383
const SCEV * visitSMaxExpr(const SCEVSMaxExpr *E)
Definition: ScopHelper.cpp:419
const SCEV * visitConstant(const SCEVConstant *E)
The following functions will just traverse the SCEV and rebuild it using GenSE and the new operands r...
Definition: ScopHelper.cpp:381
ScopExpander(const Region &R, ScalarEvolution &SE, Function *GenFn, ScalarEvolution &GenSE, const DataLayout &DL, const char *Name, ValueMapT *VMap, LoopToScevMapT *LoopMap, BasicBlock *RTCBB)
Definition: ScopHelper.cpp:256
const SCEV * visitSequentialUMinExpr(const SCEVSequentialUMinExpr *E)
Definition: ScopHelper.cpp:437
const SCEV * visitZeroExtendExpr(const SCEVZeroExtendExpr *E)
Definition: ScopHelper.cpp:389
const SCEV * visitUDivExpr(const SCEVUDivExpr *E)
Definition: ScopHelper.cpp:395
DenseMap< const SCEV *, const SCEV * > SCEVCache
Definition: ScopHelper.cpp:289
BasicBlock * RTCBB
Definition: ScopHelper.cpp:288
const SCEV * visitSignExtendExpr(const SCEVSignExtendExpr *E)
Definition: ScopHelper.cpp:392
bool isInOrigRegion(Instruction *Inst)
Is the instruction part of the original SCoP (in contrast to be located in the code-generated region)...
Definition: ScopHelper.cpp:296
const SCEV * visitSMinExpr(const SCEVSMinExpr *E)
Definition: ScopHelper.cpp:431
Value * expandCodeFor(const SCEV *E, Type *Ty, Instruction *IP)
Definition: ScopHelper.cpp:264
const SCEV * visitMulExpr(const SCEVMulExpr *E)
Definition: ScopHelper.cpp:407
const SCEV * visitVScale(const SCEVVScale *E)
Definition: ScopHelper.cpp:382
bool isInGenRegion(Instruction *Inst)
Definition: ScopHelper.cpp:305
LoopToScevMapT * LoopMap
Definition: ScopHelper.cpp:287
const SCEV * visitTruncateExpr(const SCEVTruncateExpr *E)
Definition: ScopHelper.cpp:386
Represent the attributes of a loop.
Definition: ScopHelper.h:554
llvm::MDNode * Metadata
LoopID which stores the properties of the loop, such as transformations to apply and the metadata of ...
Definition: ScopHelper.h:560
llvm::Loop * OriginalLoop
The LoopInfo reference for this loop.
Definition: ScopHelper.h:566
static TupleKindPtr Ctx