Polly 20.0.0git
FlattenAlgo.cpp
Go to the documentation of this file.
1//===------ FlattenAlgo.cpp ------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Main algorithm of the FlattenSchedulePass. This is a separate file to avoid
10// the unittest for this requiring linking against LLVM.
11//
12//===----------------------------------------------------------------------===//
13
14#include "polly/FlattenAlgo.h"
18#include "llvm/Support/Debug.h"
19#define DEBUG_TYPE "polly-flatten-algo"
20
21using namespace polly;
22using namespace llvm;
23
24namespace {
25
26/// Whether a dimension of a set is bounded (lower and upper) by a constant,
27/// i.e. there are two constants Min and Max, such that every value x of the
28/// chosen dimensions is Min <= x <= Max.
29bool isDimBoundedByConstant(isl::set Set, unsigned dim) {
30 auto ParamDims = unsignedFromIslSize(Set.dim(isl::dim::param));
31 Set = Set.project_out(isl::dim::param, 0, ParamDims);
32 Set = Set.project_out(isl::dim::set, 0, dim);
33 auto SetDims = unsignedFromIslSize(Set.tuple_dim());
34 assert(SetDims >= 1);
35 Set = Set.project_out(isl::dim::set, 1, SetDims - 1);
36 return bool(Set.is_bounded());
37}
38
39/// Whether a dimension of a set is (lower and upper) bounded by a constant or
40/// parameters, i.e. there are two expressions Min_p and Max_p of the parameters
41/// p, such that every value x of the chosen dimensions is
42/// Min_p <= x <= Max_p.
43bool isDimBoundedByParameter(isl::set Set, unsigned dim) {
44 Set = Set.project_out(isl::dim::set, 0, dim);
45 auto SetDims = unsignedFromIslSize(Set.tuple_dim());
46 assert(SetDims >= 1);
47 Set = Set.project_out(isl::dim::set, 1, SetDims - 1);
48 return bool(Set.is_bounded());
49}
50
51/// Whether BMap's first out-dimension is not a constant.
52bool isVariableDim(const isl::basic_map &BMap) {
53 auto FixedVal = BMap.plain_get_val_if_fixed(isl::dim::out, 0);
54 return FixedVal.is_null() || FixedVal.is_nan();
55}
56
57/// Whether Map's first out dimension is no constant nor piecewise constant.
58bool isVariableDim(const isl::map &Map) {
59 for (isl::basic_map BMap : Map.get_basic_map_list())
60 if (isVariableDim(BMap))
61 return false;
62
63 return true;
64}
65
66/// Whether UMap's first out dimension is no (piecewise) constant.
67bool isVariableDim(const isl::union_map &UMap) {
68 for (isl::map Map : UMap.get_map_list())
69 if (isVariableDim(Map))
70 return false;
71 return true;
72}
73
74/// Compute @p UPwAff - @p Val.
76 if (Val.is_zero())
77 return UPwAff;
78
79 auto Result = isl::union_pw_aff::empty(UPwAff.get_space());
80 isl::stat Stat =
81 UPwAff.foreach_pw_aff([=, &Result](isl::pw_aff PwAff) -> isl::stat {
82 auto ValAff =
84 auto Subtracted = PwAff.sub(ValAff);
85 Result = Result.union_add(isl::union_pw_aff(Subtracted));
86 return isl::stat::ok();
87 });
88 if (Stat.is_error())
89 return {};
90 return Result;
91}
92
93/// Compute @UPwAff * @p Val.
94isl::union_pw_aff multiply(isl::union_pw_aff UPwAff, isl::val Val) {
95 if (Val.is_one())
96 return UPwAff;
97
98 auto Result = isl::union_pw_aff::empty(UPwAff.get_space());
99 isl::stat Stat =
100 UPwAff.foreach_pw_aff([=, &Result](isl::pw_aff PwAff) -> isl::stat {
101 auto ValAff =
103 auto Multiplied = PwAff.mul(ValAff);
104 Result = Result.union_add(Multiplied);
105 return isl::stat::ok();
106 });
107 if (Stat.is_error())
108 return {};
109 return Result;
110}
111
112/// Remove @p n dimensions from @p UMap's range, starting at @p first.
113///
114/// It is assumed that all maps in the maps have at least the necessary number
115/// of out dimensions.
116isl::union_map scheduleProjectOut(const isl::union_map &UMap, unsigned first,
117 unsigned n) {
118 if (n == 0)
119 return UMap; /* isl_map_project_out would also reset the tuple, which should
120 have no effect on schedule ranges */
121
122 auto Result = isl::union_map::empty(UMap.ctx());
123 for (isl::map Map : UMap.get_map_list()) {
124 auto Outprojected = Map.project_out(isl::dim::out, first, n);
125 Result = Result.unite(Outprojected);
126 }
127 return Result;
128}
129
130/// Return the @p pos' range dimension, converted to an isl_union_pw_aff.
131isl::union_pw_aff scheduleExtractDimAff(isl::union_map UMap, unsigned pos) {
132 auto SingleUMap = isl::union_map::empty(UMap.ctx());
133 for (isl::map Map : UMap.get_map_list()) {
134 unsigned MapDims = unsignedFromIslSize(Map.range_tuple_dim());
135 assert(MapDims > pos);
136 isl::map SingleMap = Map.project_out(isl::dim::out, 0, pos);
137 SingleMap = SingleMap.project_out(isl::dim::out, 1, MapDims - pos - 1);
138 SingleUMap = SingleUMap.unite(SingleMap);
139 };
140
141 auto UAff = isl::union_pw_multi_aff(SingleUMap);
142 auto FirstMAff = isl::multi_union_pw_aff(UAff);
143 return FirstMAff.at(0);
144}
145
146/// Flatten a sequence-like first dimension.
147///
148/// A sequence-like scatter dimension is constant, or at least only small
149/// variation, typically the result of ordering a sequence of different
150/// statements. An example would be:
151/// { Stmt_A[] -> [0, X, ...]; Stmt_B[] -> [1, Y, ...] }
152/// to schedule all instances of Stmt_A before any instance of Stmt_B.
153///
154/// To flatten, first begin with an offset of zero. Then determine the lowest
155/// possible value of the dimension, call it "i" [In the example we start at 0].
156/// Considering only schedules with that value, consider only instances with
157/// that value and determine the extent of the next dimension. Let l_X(i) and
158/// u_X(i) its minimum (lower bound) and maximum (upper bound) value. Add them
159/// as "Offset + X - l_X(i)" to the new schedule, then add "u_X(i) - l_X(i) + 1"
160/// to Offset and remove all i-instances from the old schedule. Repeat with the
161/// remaining lowest value i' until there are no instances in the old schedule
162/// left.
163/// The example schedule would be transformed to:
164/// { Stmt_X[] -> [X - l_X, ...]; Stmt_B -> [l_X - u_X + 1 + Y - l_Y, ...] }
165isl::union_map tryFlattenSequence(isl::union_map Schedule) {
166 auto IslCtx = Schedule.ctx();
167 auto ScatterSet = isl::set(Schedule.range());
168
169 auto ParamSpace = Schedule.get_space().params();
170 auto Dims = unsignedFromIslSize(ScatterSet.tuple_dim());
171 assert(Dims >= 2u);
172
173 // Would cause an infinite loop.
174 if (!isDimBoundedByConstant(ScatterSet, 0)) {
175 POLLY_DEBUG(dbgs() << "Abort; dimension is not of fixed size\n");
176 return {};
177 }
178
179 auto AllDomains = Schedule.domain();
180 auto AllDomainsToNull = isl::union_pw_multi_aff(AllDomains);
181
182 auto NewSchedule = isl::union_map::empty(ParamSpace.ctx());
183 auto Counter = isl::pw_aff(isl::local_space(ParamSpace.set_from_params()));
184
185 while (!ScatterSet.is_empty()) {
186 POLLY_DEBUG(dbgs() << "Next counter:\n " << Counter << "\n");
187 POLLY_DEBUG(dbgs() << "Remaining scatter set:\n " << ScatterSet << "\n");
188 auto ThisSet = ScatterSet.project_out(isl::dim::set, 1, Dims - 1);
189 auto ThisFirst = ThisSet.lexmin();
190 auto ScatterFirst = ThisFirst.add_dims(isl::dim::set, Dims - 1);
191
192 auto SubSchedule = Schedule.intersect_range(ScatterFirst);
193 SubSchedule = scheduleProjectOut(SubSchedule, 0, 1);
194 SubSchedule = flattenSchedule(SubSchedule);
195
196 unsigned SubDims = getNumScatterDims(SubSchedule);
197 assert(SubDims >= 1);
198 auto FirstSubSchedule = scheduleProjectOut(SubSchedule, 1, SubDims - 1);
199 auto FirstScheduleAff = scheduleExtractDimAff(FirstSubSchedule, 0);
200 auto RemainingSubSchedule = scheduleProjectOut(SubSchedule, 0, 1);
201
202 auto FirstSubScatter = isl::set(FirstSubSchedule.range());
203 POLLY_DEBUG(dbgs() << "Next step in sequence is:\n " << FirstSubScatter
204 << "\n");
205
206 if (!isDimBoundedByParameter(FirstSubScatter, 0)) {
207 POLLY_DEBUG(dbgs() << "Abort; sequence step is not bounded\n");
208 return {};
209 }
210
211 auto FirstSubScatterMap = isl::map::from_range(FirstSubScatter);
212
213 // isl_set_dim_max returns a strange isl_pw_aff with domain tuple_id of
214 // 'none'. It doesn't match with any space including a 0-dimensional
215 // anonymous tuple.
216 // Interesting, one can create such a set using
217 // isl_set_universe(ParamSpace). Bug?
218 auto PartMin = FirstSubScatterMap.dim_min(0);
219 auto PartMax = FirstSubScatterMap.dim_max(0);
220 auto One = isl::pw_aff(isl::set::universe(ParamSpace.set_from_params()),
221 isl::val::one(IslCtx));
222 auto PartLen = PartMax.add(PartMin.neg()).add(One);
223
224 auto AllPartMin = isl::union_pw_aff(PartMin).pullback(AllDomainsToNull);
225 auto FirstScheduleAffNormalized = FirstScheduleAff.sub(AllPartMin);
226 auto AllCounter = isl::union_pw_aff(Counter).pullback(AllDomainsToNull);
227 auto FirstScheduleAffWithOffset =
228 FirstScheduleAffNormalized.add(AllCounter);
229
230 auto ScheduleWithOffset =
232 isl::union_pw_multi_aff(FirstScheduleAffWithOffset))
233 .flat_range_product(RemainingSubSchedule);
234 NewSchedule = NewSchedule.unite(ScheduleWithOffset);
235
236 ScatterSet = ScatterSet.subtract(ScatterFirst);
237 Counter = Counter.add(PartLen);
238 }
239
240 POLLY_DEBUG(dbgs() << "Sequence-flatten result is:\n " << NewSchedule
241 << "\n");
242 return NewSchedule;
243}
244
245/// Flatten a loop-like first dimension.
246///
247/// A loop-like dimension is one that depends on a variable (usually a loop's
248/// induction variable). Let the input schedule look like this:
249/// { Stmt[i] -> [i, X, ...] }
250///
251/// To flatten, we determine the largest extent of X which may not depend on the
252/// actual value of i. Let l_X() the smallest possible value of X and u_X() its
253/// largest value. Then, construct a new schedule
254/// { Stmt[i] -> [i * (u_X() - l_X() + 1), ...] }
255isl::union_map tryFlattenLoop(isl::union_map Schedule) {
256 assert(getNumScatterDims(Schedule) >= 2);
257
258 auto Remaining = scheduleProjectOut(Schedule, 0, 1);
259 auto SubSchedule = flattenSchedule(Remaining);
260 unsigned SubDims = getNumScatterDims(SubSchedule);
261
262 assert(SubDims >= 1);
263
264 auto SubExtent = isl::set(SubSchedule.range());
265 auto SubExtentDims = unsignedFromIslSize(SubExtent.dim(isl::dim::param));
266 SubExtent = SubExtent.project_out(isl::dim::param, 0, SubExtentDims);
267 SubExtent = SubExtent.project_out(isl::dim::set, 1, SubDims - 1);
268
269 if (!isDimBoundedByConstant(SubExtent, 0)) {
270 POLLY_DEBUG(dbgs() << "Abort; dimension not bounded by constant\n");
271 return {};
272 }
273
274 auto Min = SubExtent.dim_min(0);
275 POLLY_DEBUG(dbgs() << "Min bound:\n " << Min << "\n");
276 auto MinVal = getConstant(Min, false, true);
277 auto Max = SubExtent.dim_max(0);
278 POLLY_DEBUG(dbgs() << "Max bound:\n " << Max << "\n");
279 auto MaxVal = getConstant(Max, true, false);
280
281 if (MinVal.is_null() || MaxVal.is_null() || MinVal.is_nan() ||
282 MaxVal.is_nan()) {
283 POLLY_DEBUG(dbgs() << "Abort; dimension bounds could not be determined\n");
284 return {};
285 }
286
287 auto FirstSubScheduleAff = scheduleExtractDimAff(SubSchedule, 0);
288 auto RemainingSubSchedule = scheduleProjectOut(std::move(SubSchedule), 0, 1);
289
290 auto LenVal = MaxVal.sub(MinVal).add(1);
291 auto FirstSubScheduleNormalized = subtract(FirstSubScheduleAff, MinVal);
292
293 // TODO: Normalize FirstAff to zero (convert to isl_map, determine minimum,
294 // subtract it)
295 auto FirstAff = scheduleExtractDimAff(Schedule, 0);
296 auto Offset = multiply(FirstAff, LenVal);
297 isl::union_pw_multi_aff Index = FirstSubScheduleNormalized.add(Offset);
298 auto IndexMap = isl::union_map::from(Index);
299
300 auto Result = IndexMap.flat_range_product(RemainingSubSchedule);
301 POLLY_DEBUG(dbgs() << "Loop-flatten result is:\n " << Result << "\n");
302 return Result;
303}
304} // anonymous namespace
305
307 unsigned Dims = getNumScatterDims(Schedule);
308 POLLY_DEBUG(dbgs() << "Recursive schedule to process:\n " << Schedule
309 << "\n");
310
311 // Base case; no dimensions left
312 if (Dims == 0) {
313 // TODO: Add one dimension?
314 return Schedule;
315 }
316
317 // Base case; already one-dimensional
318 if (Dims == 1)
319 return Schedule;
320
321 // Fixed dimension; no need to preserve variabledness.
322 if (!isVariableDim(Schedule)) {
323 POLLY_DEBUG(dbgs() << "Fixed dimension; try sequence flattening\n");
324 auto NewScheduleSequence = tryFlattenSequence(Schedule);
325 if (!NewScheduleSequence.is_null())
326 return NewScheduleSequence;
327 }
328
329 // Constant stride
330 POLLY_DEBUG(dbgs() << "Try loop flattening\n");
331 auto NewScheduleLoop = tryFlattenLoop(Schedule);
332 if (!NewScheduleLoop.is_null())
333 return NewScheduleLoop;
334
335 // Try again without loop condition (may blow up the number of pieces!!)
336 POLLY_DEBUG(dbgs() << "Try sequence flattening again\n");
337 auto NewScheduleSequence = tryFlattenSequence(Schedule);
338 if (!NewScheduleSequence.is_null())
339 return NewScheduleSequence;
340
341 // Cannot flatten
342 return Schedule;
343}
unsigned unsignedFromIslSize(const isl::size &Size)
Check that Size is valid (only on debug builds) and cast it to unsigned.
Definition: ISLTools.h:40
#define POLLY_DEBUG(X)
Definition: PollyDebug.h:23
isl::val plain_get_val_if_fixed(isl::dim type, unsigned int pos) const
isl::basic_map_list get_basic_map_list() const
class size range_tuple_dim() const
isl::map unite(isl::map map2) const
isl::map project_out(isl::dim type, unsigned int first, unsigned int n) const
static isl::map from_range(isl::set set)
isl::multi_pw_aff union_add(isl::multi_pw_aff mpa2) const
isl::multi_pw_aff sub(const isl::multi_pw_aff &multi2) const
isl::multi_pw_aff union_add(const isl::multi_pw_aff &mpa2) const
isl::space get_space() const
isl::pw_aff mul(isl::pw_aff pwaff2) const
isl::set project_out(isl::dim type, unsigned int first, unsigned int n) const
static isl::set universe(isl::space space)
boolean is_bounded() const
class size tuple_dim() const
class size dim(isl::dim type) const
isl::space params() const
isl::space domain() const
bool is_error() const
static stat ok()
isl::union_set range() const
isl::union_map unite(isl::union_map umap2) const
isl::union_set domain() const
isl::map_list get_map_list() const
isl::union_map flat_range_product(isl::union_map umap2) const
isl::space get_space() const
isl::ctx ctx() const
isl::union_map intersect_range(isl::space space) const
static isl::union_map empty(isl::ctx ctx)
isl::union_map subtract(isl::union_map umap2) const
static isl::union_map from(isl::multi_union_pw_aff mupa)
isl::space get_space() const
isl::multi_union_pw_aff add(const isl::multi_union_pw_aff &multi2) const
stat foreach_pw_aff(const std::function< stat(isl::pw_aff)> &fn) const
isl::multi_union_pw_aff sub(const isl::multi_union_pw_aff &multi2) const
static isl::union_pw_aff empty(isl::space space)
isl::union_pw_aff pullback(isl::union_pw_multi_aff upma) const
isl::union_pw_multi_aff add(isl::union_pw_multi_aff upma2) const
bool is_null() const
static isl::val one(isl::ctx ctx)
boolean is_one() const
boolean is_zero() const
static unsigned pos(__isl_keep isl_space *space, enum isl_dim_type type)
Definition: isl_map.c:70
static void subtract(__isl_keep isl_mat *M, __isl_keep isl_mat **U, __isl_keep isl_mat **Q, unsigned row, unsigned i, unsigned j, isl_int m)
Definition: isl_mat.c:599
#define assert(exp)
This file contains the declaration of the PolyhedralInfo class, which will provide an interface to ex...
unsigned getNumScatterDims(const isl::union_map &Schedule)
Determine how many dimensions the scatter space of Schedule has.
Definition: ISLTools.cpp:163
isl::val getConstant(isl::pw_aff PwAff, bool Max, bool Min)
If PwAff maps to a constant, return said constant.
Definition: ISLTools.cpp:552
isl::union_map flattenSchedule(isl::union_map Schedule)
Recursively flatten a schedule.
n
Definition: youcefn.c:8